As the media coverage intensifies during the course of a high profile event, such as pandemic (H1N1) 2009, establishing alert criteria can help guide users of Internet based biosurveillance systems. In this study, alert categories 1 (i.e. increase in case counts), 3 (i.e. cases or fatalities of health care workers, military personnel and/or national officials), 6 (i.e. healthcare facility strain or collapse), 13 (i.e. health policy change) and 15 (i.e. border closure) were significantly correlated with the WHO confirmed case count in the four month study period (October 2009 to January 2010 (week 41, 2009 to week 5, 2010). Thus, alerts targeting direct indicators (Alerts 1 and 3) and indirect indicators (Alerts 6, 13, and 15) provided situational awareness during the pandemic.
Increase in case counts (Alert 1) is the most similar alert category to WHO case count data. The significant correlation suggests that reports of confirmed cases in the media are consistent with confirmed cases identified through public health surveillance and testing. A rising number of cases or fatalities of health care workers, military personnel or national officials (Alert 3), who are often more aware of prevention measures than the general public, is an indication of an emerging or escalating infectious disease outbreak, consistent with a rise in case counts. Health care facility strain or collapse (Alert 6) is an indirect indicator of increasing case counts and/or increase in health care worker cases or fatalities.
Though only six alerts were generated for border closure (Alert 15), it is not surprising that the alert is correlated with WHO case data considering the severity of an event that would warrant such an action. Similarly, massive release of anti-virals or vaccine stockpiles (Alert 12) indicates a severe escalation or perceived escalation in cases or deaths. This alert did not reach significance, however, likely because only two alerts were generated for this category. Alerts 1, 6 and 13 are also correlated with each other and maintain a highly significant correlation with WHO case counts when compared individually to WHO case counts along with alerts 3 and 15. An increase in case counts would lead to healthcare infrastructure strain and health policy change, likely accounting for the intra-alert correlation. Comparison of alerts in pandemic versus non-pandemic years is required for verification; however, this study suggests that Alerts 1, 3, 6, 13 and 15 may all serve as proxy indicators in the media of an emerging or escalating event on the ground and could serve as surveillance measures in conjunction with public health surveillance for a future pandemic.
The other alerts may not have been significantly correlated with WHO case counts due to the relatively mild manifestation of the pandemic (H1N1) 2009 without a virulent secondary wave or changes in transmission patterns.[15] Though reports of atypical clinical manifestations, transmission to other species, anti-viral resistance[16] and failure and viral mutations were prevalent in the media, such mechanisms appear to have not contributed to a significant escalation in case count.[15] These alerts, however, could serve as potential indicators for a future pandemic. A large increase in fatalities (Alert 2) was borderline significant with only 9 alerts generated. Again this is likely due to the mild nature of the pandemic, with an estimated 12,000 deaths, compared to previous pandemics, 1918, 1957 or 1968, with estimated attributable mortality of 50 to 100 million, 1–2 million, and 1 million, respectively.[15, 17, 18]
Correlation analysis by region showed some variation in the significant alerts as was expected based on the differences in severity of the pandemic, capacity for disease detection and capability for response for each region. Alert 5 (i.e. severe manifestation, co-infection or re-infection) and alert 11 (i.e. vaccine failure, severe reaction, or black market sales) emerged as significantly correlated to WHO case counts in Europe and in Europe, South Asia-Canada-Oceana, respectively, though they were not significant when global WHO case counts were considered. These results suggest that regional differences in the evolution of the pandemic are important to consider when developing alert criteria. Alerts 1, 3, 6 and 13 were each significant in one or more regions, which further supports their appropriateness for global surveillance.
Utilizing Internet media sources, Argus identified the first cases of confirmed pandemic (H1N1) 2009 published on the Internet an average of 1.5 days ahead of WHO official reporting (range 1 to 16 days) for all 64 non-US countries reporting by June 1, 2009. This was expected since information from Internet media reports is often timelier than the official reporting of cases to the public after laboratory confirmation. Though in this case the lead-time may be only a few days, this study provides evidence of the validity of using event-based biosurveillance for detecting emerging biological events.
This study had limitations. The alert criteria evolved from initiation in August 2009 through November 2009. However, the study period chosen for the majority of the analysis was after October in order to mitigate any bias from changing alert criteria. In addition, the alert criteria changes were small, geared toward making the alert criteria more specific and did not significantly impact the results (data not shown). In event-based biosurveillance studies there is often a lack of robust gold standard official comparison data. WHO data can be limited by delays in country reporting and under-reporting, however for the 2009 pandemic WHO was considered a timely and accurate source of global data [19]. Finally, the study had a restricted time window. Fears of a virulent resurgence of the virus in a second wave were unfounded and when WHO case counts and Argus alerts decreased to low levels in January 2010, the study was ended. Nonetheless, sufficient data was collected to identify significant indicators of the evolving pandemic.
The pandemic (H1N1) 2009 was of global significance and a main focus of local, national and international public health organizations, particularly during the initial phase. However, there are numerous human, animal and plant diseases that are economically important but are not normally tracked by public health organizations, suggesting that Internet surveillance of such diseases could provide lead-time of an outbreak compared to traditional methods [20]. When surveillance for indirect indicators (suspected cases or prevention measures) is performed in addition to direct reports of disease, the lead-time often increases further.[8, 21] Surveillance of pandemic (H1N1) 2009 serves as an example of the real-time capability of identifying emerging disease events in general, particularly events that may be evident in local media in the regional vernacular.
Other event-based biosurveillance systems have demonstrated the effectiveness of extracting relevant information from Internet media sources as a means for detecting and monitoring disease events.[21] Internet media reporting provides an emerging resource for early detection of new events and for providing situational awareness of evolving events, particularly when official sources may not be available. Alerts based on media reports can provide event situational awareness and cue users of shifts in infectious disease trends. As the number of online news media sources, including social media sources with user-generated content, continues to expand, event-based biosurveillance will play an increasingly important role in disease surveillance. On-going validation and verification of event-based biosurveillance methods with epidemiological and clinical data by users and surveillance system developers will increase the robustness of this approach for detecting and tracking emerging events.