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Abstract
Background: Regression calibration as a method for handling measurement error is becoming
increasingly well-known and used in epidemiologic research. However, the standard version of the
method is not appropriate for exposure analyzed on a categorical (e.g. quintile) scale, an approach
commonly used in epidemiologic studies. A tempting solution could then be to use the predicted
continuous exposure obtained through the regression calibration method and treat it as an
approximation to the true exposure, that is, include the categorized calibrated exposure in the
main regression analysis.

Methods: We use semi-analytical calculations and simulations to evaluate the performance of the
proposed approach compared to the naive approach of not correcting for measurement error, in
situations where analyses are performed on quintile scale and when incorporating the original scale
into the categorical variables, respectively. We also present analyses of real data, containing
measures of folate intake and depression, from the Norwegian Women and Cancer study
(NOWAC).

Results: In cases where extra information is available through replicated measurements and not
validation data, regression calibration does not maintain important qualities of the true exposure
distribution, thus estimates of variance and percentiles can be severely biased. We show that the
outlined approach maintains much, in some cases all, of the misclassification found in the observed
exposure. For that reason, regression analysis with the corrected variable included on a categorical
scale is still biased. In some cases the corrected estimates are analytically equal to those obtained
by the naive approach. Regression calibration is however vastly superior to the naive method when
applying the medians of each category in the analysis.

Conclusion: Regression calibration in its most well-known form is not appropriate for
measurement error correction when the exposure is analyzed on a percentile scale. Relating back
to the original scale of the exposure solves the problem. The conclusion regards all regression
models.
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Introduction
Measurement error is recognized as a common problem
in epidemiological studies. Many interesting variables are
registered with a relatively large degree of uncertainty,
often due to low-price and simple measurement methods.
The errors could be either random (e.g. due to biological
fluctations about a mean), systematic (e.g. due to varying
calibrations of measurement instruments), or both, which
is most often the case. It is well known that measurement
error in predictors biases effect estimates in regression
modelling. For this reason, measurement error has been
the subject of extensive research over the recent decades,
and several methods have been proposed for handling the
problem. In linear models the standard reference is [1],
while Carroll et al. [2] provide an excellent overview of
methods applying to non-linear models.

One of the methods for dealing with measurement error
that has gained popularity is the so-called regression cali-
bration method; see for example Chapter 3 of [2]. This is
most likely due to its intuitive nature, relative ease of use
and general applicability. It has also been shown to have
good properties in many situations. Regression calibra-
tion was introduced to the epidemiologic community by
Rosner et al. [3,4]. In another formulation of the same
method [5], the idea is to predict the unobservable error-
prone variable by means of regression, and then to
include this predicted variable in the main analysis. The
approach involves efforts to somehow relate the observed
variable to the underlying "true" variable, either through
a sub validation study where the true value is observed
directly for some of the individuals, through repeated
measurements for some or all of the individuals, or by use
of so-called instrumental variables that supply informa-
tion about the true values relative to the measured values.
It is also possible to apply information from external
sources. Software for performing regression calibration is
available in STATA [6] and in SAS [7,8].

The most well-known version of regression calibration is
the one developed for continuous explanatory variables.
However, in epidemiological studies it is also common to
categorize the exposure variables according to rank such
as quintiles; a selection of newer examples of studies using
this approach is [9-13]. Usually an analysis comparing
each quintile group to the lowest (reference) group is sup-
plemented with a test for trend for the quintile numbers.
Another trend estimator applies the median values of the
quintile groups [14,15]. The reason for categorizing the
exposure could be to obtain analyses that require less
stringent assumptions and that are more robust to outly-
ing values [16]. Now that regression calibration is becom-
ing more standard in the epidemiologic community, one
can easily imagine a situation where this method is
applied to a continuous variable, which is subsequently

categorized before it is incorporated in the main (regres-
sion) analysis. The researcher might then feel confident
that he or she has taken the necessary precautions with
regard to measurement error.

We study the performance of this approach under 3 differ-
ent modelling schemes, all applying the same categoriza-
tion according to quintiles: regression on (A) dummy
variables, (B) quintile numbers, and (C) median value
within quintile groups, thereby obtaining what one may
call an enhanced trend estimator. The corresponding
results from analyses with the continuous exposure are
included for comparison. Linear regression is used as the
framework for our demonstration, but, as will be shown,
the results are valid for other regression models as well.

We find that for analysis with dummy variables and for
simple trend analysis, in most cases the corrected effect
estimates are approximately equal to the ones obtained
without making the correction. In some cases they are
identical. We argue that categorizing the corrected expo-
sure still retains misclassification similar to the misclassi-
fication obtained using the observed exposure. This
misclassification induces bias in the effect estimates.
When introducing the median value of each category to
the analysis, the correction method regains some of its
usual advantage over the naive approach. The reason for
this will become clear.

We start off defining the models used, and then present
analytical and semi-analytical arguments and results for
the various settings defined above. The results are illus-
trated by simulated examples and also by a real-life exam-
ple, where we have examined the relationship between
folate intake and risk of depression in a prospective cohort
study of Norwegian women, the Norwegian Women and
Cancer study (NOWAC).

Methods
In the following we will assume that an exposure variable
X is measured with error and in effect is unobservable. The
true exposure X is instead observed through a measured
value W, and we assume an additive error model such that
W = X + U, where U is the measurement error, with
expected value E (U) = 0. We also observe a response or
disease variable Y and sometimes a covariate Z, both
measured without error. Importantly, we assume that the
measurement error is non-differential, i.e., F (W|X, Y) = F
(W|X). This implies that W contributes no new informa-
tion about Y apart from what is already in X.

The idea of regression calibration [3-5,17-19] is to predict
the unobservable variable X by means of regression, and
then to include this predicted variable in the main analy-
sis. As such, it is applicable to any regression modelling
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setting. Extra information needs to be supplied in order to
relate the true variable to the observed error-prone varia-
ble. We assume we have replicated measures of the expo-
sure. That is, we assume that for individual i there exist ki

replicate measurements of Xi, given by Wij = Xi + Uij; j =

1,..., ki, i = 1, ..., n. Their mean is i. The replicates are

assumed to be uncorrelated given X. Following [2], in
cases with replicated data, the best linear predictor of X

given  and Z, is given by

where μX, μW and μZ denote the expected values of X, W

and Z, respectively; ,  and  are the variances of

X, U and Z; and finally σXZ denotes the covariance

between X and Z. Since E (U) = 0, μX = μW. Equation (1)

defines the RC predictor for the error-prone exposure X.
The parameters in (1) must be estimated from the data,
e.g. as described in [2], pages 47–48, or see [6] for a
detailed procedure in STATA.

The true exposure X and the covariate Z are assumed to be
associated with the response variable Y in a regression
model. In the case of a linear regression model, the rela-
tion between the continuous X and Z and the continuous
Y is given by

E (Y) = β0 + β1 X + β2Z.  (2)

However, as mentioned, we are interested in estimating
the effects of exposure categorized according to quintiles.
We define three modelling schemes as follows: In model
A we apply dummy variables to see separately the effects
of the different quintile groups compared to the lowest
(reference) group:

E (Y) = α0 + α1I1 + α2I2 + α3I3 + α4I4 + α5Z,  (3)

where Ir is 1 if x ∈  and 0 other-

wise. FX denotes the cumulative distribution of X, hence

 is the rth quintile point in the distribution of X.

When evaluating the performance for this method, we

mainly look at α4, which is the difference in mean

response between the extreme quintile groups for the

exposure. The covariate Z is still analyzed on the continu-
ous scale.

Using model B we will obtain a simple trend estimator for
the exposure, which is often supplemented to the effect
estimates from model A. We write

E (Y) = γ0 + γ1Xc + γ2Z,  (4)

where Xc is a number from 0 to 4, according to which

quintile group X falls into. Hence, if x ∈

 then xc = r.

The trend estimator in model C is an enhancement from
the one in model B, in that it retains some of the informa-
tion from the original continuous measurements, but still
deals with extreme values and skewed exposure distribu-
tions. The model is defined by

E (Y) = ψ0 + ψ1Xmed + ψ2Z,  (5)

where Xmed are the median values of the individuals falling

into the various categories. Hence, if x ∈

, then xmed is assigned the median

value of all the individuals in the rth quintile group.

When comparing the effect estimates obtained from fit-
ting a regression model involving the categorized RC pre-
dictor as the exposure to those obtained using a naive

predictor ( ) and to the true effect estimates (obtained
from X), we categorize the two former according to quin-
tiles in their respective distributions. Hence, the cut-
points for the naive predictor and the RC predictor will in
general not be the same as the ones for the true exposure.
Neither will the median values.

If the response variable Y is instead dichotomuous, e.g.
representing a disease variable where the value 1 is
assigned to diseased individuals and 0 is assigned to
healthy ones, we must replace E (Y) with the logit trans-
form log [E (Y)/(1 - E (Y)]. Similar transforms apply to
other regression models.

With respect to standard errors for the RC corrected esti-
mates, these will be underestimated by ordinary methods
as they do not take into account the variance in the esti-
mation of X. Since the computation of explicit formulas
for the standard error is quite tedious [5], standard errors
are typically obtained through bootstrapping [2,20].
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Results
Analytical results
In a situation without additional covariates, Equation (1)
simplifies considerably. We can write

where the factor  is a modified version

of the reliability ratio, usually defined as

. In the following we look first to the

situation where all individuals are measured the same
number of times, in which case we obtain analytical
results for all models A-C. When we allow the number of
replicates to vary, we must rely on semi-analytical meth-
ods to make inferences.

Constant number of replicates

When all individuals are measured an equal number of

times (ki = k), we find that the RC predictor  given in

Equation (6) is simply a linear transformation of the naive

predictor . This transformation represents in essence a
weighting between the estimated sample mean and the
individual means for each data point. Given a certain

error ( ); when k is large and  thus rel-

atively close to 1, relatively large confidence is put on the
individual means and little correction is made. On the
other hand, when k is small, all data points are adjusted
closer to the sample mean. In both cases the adjustment is
the same for all subjects, resulting in a distribution that is
squeezed towards the estimated sample mean, as com-
pared to the distribution of measured values.

The variance of  is given by

which is greater than Var (X) whenever σU > 0, that is,

when there is measurement error. Notice also that when k

→ ∞, Var ( ) → Var (X); that is, if we were to have infi-

nitely many replications, we would be able to estimate Var
(X) without bias, using the observed values.

Furthermore, the variance of  is given by

Var ( ) = Var (λ' ) = λ'2Var ( ) = λ'Var (X).

Thus, generally, the variance of  underestimates the var-

iance of the exposure, in contrast to the variance of ,
which overestimates it.

Relating this adjusted continuous exposure to a response
in a regression analysis results in larger effect estimates as
compared to the ones obtained using the measured expo-
sure. For example, in linear regression the effect is decided
by the ratio of the covariance of exposure and response to

the variance of the response (σXY/ ), and even though

the covariance between the corrected exposure and the

response ( ) underestimates σXY due to measurement

error, this is counteracted by the decreased variance of ,
resulting in unbiased effect estimates. Using the observed
exposure, we get a so-called attenuated effect estimate,

which is underestimating the true effect by a factor λ' [2].

However, when  and  are categorized according to
percentiles in their respective distributions, we have a new

problem. Since  is merely a linear transformation of

, naturally any percentile point  in the distribution

of  is given by the same linear transformation of the cor-

responding percentile point  in the distribution of .

Hence, categorized according to quintile groups, c and

c are the same. Consequently, effect estimates of

dummy variables and quintile numbers in models A and
B will be equal for the naive and the RC approach. This is
valid for all types of response variables.

When it comes to using the medians of each quintile as
explanatory variable, as proposed in model C, regression
calibration regains some of its usual superiority over naive
analyses. As explained, RC involves a squeezing of values
towards the mean, so the distances between the medians
in the distribution of corrected exposure will be smaller
than in the naive distribution. Hence, corrected effect esti-
mates will be larger than naive estimates.
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Since the spread in the distribution of  underestimates
the spread in the true exposure distribution, naturally the
distances between median points in groups are also
underestimated. However, as with the continuous case,
this is counteracted by decreased covariance with the
response.

We illustrate this using linear regression. If X ~ N (0, )

and U ~ N (0, ), and we have k replicates, then  ~

N (0, /λ') and  ~ N (0, λ' ). Hence, for any per-

centile point q we have that  and

. Hence, for variables consisting of median

points in quintile groups we have that Var ( med) = Var

(Xmed)/λ' and Var ( med) = λ' Var (Xmed).

Regarding the covariances, we have that given that the
error in the exposure is independent of the response Y

(nondifferential measurement error), Cov ( , Y) = Cov
(X, Y). Thus, the covariance between the response and the
variable given by medians in quintile groups of the naive
exposure is

Cov ( med, Y) = Cov (Xmed, Y).

Furthermore, using that the correlation between med and

Y equals the correlation between med and Y, we find

that the covariance between med and Y is

Cov ( med,Y)= λ' Cov (Xmed, Y),

Hence, since in this case Cov ( med, Y)/Var ( med)  = Cov

(Xmed, Y)/Var (Xmed), the regression calibrated effect esti-

mate is asymptotically correct. The naive estimates are on

the other hand attenuated by the same factor Λ as when
analyzing the exposure on continuous scale.

Varying numbers of replicates

When the number of replicates varies between individu-
als, we have in addition a kind of confusion effect, in that
some data points are adjusted to a larger extent than oth-
ers. However, the main effect of the transformation is the
mentioned adjustment towards the sample mean. At least,
we propose that classification of the corrected predictor

 according to quintiles leads to much the same classifi-

cation pattern as classification of the naive predictor .

To uphold the previous proposal, Table 1 displays the
results of a simulated example, where for various replica-
tion patterns we have obtained the percentages of corre-

sponding classifications between Xc and c, Xc and c,

and c and c, respectively. We used X ~ N (0, 1) and U

~ N (0,1), and the number of replications was either 5 or
1. The total number of individuals was n = 100000,
divided in various ways between the two replication
groups. As can be seen from the table, most of the individ-
uals were classified equally for the naive and the regres-
sion calibrated predictors. The exact figures vary
depending on the replication pattern and which group the
individuals belong to, the replicated or the nonreplicated
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Table 1: Misclassification. Percentages of equal classifications between Xc and c, Xc and c and c and c for various replication 

patterns, where Xc is the categorized true exposure, c is the categorized mean measured exposure, and c is the categorized RC 

corrected exposure, all of them categorized according to quintiles in the individual distributions.

Pattern applying to xc = c (%) xc = c (%) c = c (%)

1 total sample 44.3 44.1 89.1
20% with 5 reps 58.3 58.1 72.7
80% with 1 rep 40.8 40.6 93.2

2 total sample 55.6 55.2 89.1
80% with 5 reps 59.4 59.3 93.2
20% with 1 rep 40.2 38.8 72.7

3 total sample 50.3 49.7 83.0
50% with 5 reps 59.5 58.9 83.0
50% with 1 rep 41.0 40.5 83.0

W X̂ W X̂

W X̂

w x̂ w x̂
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ones, and finally which of these groups is larger and thus

dominant in deciding the spread in the distribution of .

At the same time, we see that the percentages of cases that
are correctly classified (that is, in accordance with the clas-
sification of the true X), are very similar for the naive and
the corrected predictors. Hence, categorizing using the
corrected exposure still retains misclassification, and the
magnitude of this is very similar to the misclassification
obtained with the naive approach. Hence, the estimates
relating to categorical exposure in models A and B, will be
very similar for the naive and the RC approach. However,
in model C, regression calibration still benefits from the
mentioned squeezing of values towards the mean.

Illustration with simulated data
We simulated a variety of situations to obtain numerical
results regarding the biases of the naive and the corrected
effect estimates. These simulations were conducted using
the software program R version 2.2.1 [21], in which the
base integrated routine for general linear models was
applied to generated datasets of size n = 100000.

The true exposure X and the response Y were both gener-
ated from standard normal distributions. The error U was

normally distributed with mean zero and variance 

decided by various fixed levels of the reliability ratio

. The covariate Z was omitted.

We studied cases where the correlation ρXY between the
response and the true continuous exposure, and hence the
effect β1, was either 0.7 or 0.2, see Equation (2). These
cases correspond to true mean differences α4 of 1.96 and
0.56 between the extreme quintiles in model A (Equation
(3)), naive trends γ1 of 0.47 and 0.13 (model B, Equation
(4)), and effects ψ1 of 0.76 and 0.22 using medians in
groups as explanatory variables (model C, see Equation
(5)).

Results were produced for three levels of the reliability
ratio λ: 0.2 (which corresponds to a rather large measure-
ment error), 0.5, and 0.8 (modest measurement error sit-
uation). Standard errors for the corrected effect estimates
are obtained via resampling pairs bootstrapping with 200
bootstrap samples [20].

Two replication patterns were studied. First, we simulated
situations where all individuals were measured twice, that
is ki = k = 2. Next, we looked at situations in which a ran-
dom 20% subset of the individuals are measured 5 times,
while the rest only had 1 measurement (replication pat-
tern 1 from Table 1). All the results are given in Table 2.

We see that in situations with a constant number of repli-
cates, regression calibration estimates are equal to the
ones obtained from the naive approach, unless the origi-
nal scale of measurement is somehow incorporated. None
of the methods performed very poorly as long as the
measurement error was not too large, however the effects
were attenuated by a factor of almost 0.6 in both models
A and B in the most severe measurement error situation
studied (λ = 0.2). When λ = 0.5, the attenuation factor for
these models was just above 0.8. Hence, the effect esti-
mates differ considerably from the true effects in many
cases. Moreover, a decrease in the reliability ratio is asso-
ciated with increased bias, as was to be expected.

Using the median values in model C, we see that the
regression calibration approach gives unbiased effect esti-
mates. This is in contrast to the naive approach, which in
the most severe cases (λ = 0.2) indicates effects that are
about 1/3 of the true effects.

When the number of replicates varies, we see again that
the regression calibration fails to improve significantly the
effect estimates relative to the naive approach, except for
with model C. In these results we see some small, though
not substantial, differences between the two approaches
for models A and B, due to the confusion effect men-
tioned previously. We also see that, in contrast to what
could be expected from Table 1, it is the regression cali-
brated estimates that are slightly better off. Although the
naive approach gives a higher percentage of correctly clas-
sified cases, the mean squared distance between the true
and the observed category is actually larger than for the RC
approach (1.23 vs. 1.20), explaining this apparent incon-
sistency. Notice also that the results are generally worse
with this replication pattern than when all individuals
were measured twice.

Including a covariate
Regression calibration uses the information of covariates
in the correction procedure, see Equation (1). Thus,
including a variable correlated to X in the analysis will
probably give RC an advantage relative to the naive
approach, especially when the correlation is strong.

We study the performance of regression calibration in the
presence of a standard normal covariate Z, measured
without error. The effect of Z is set to be equal to the effect
of X, and the correlation ρXZ between X and Z is either 0.2
or 0.7. Otherwise the situations are the same as in the pre-
vious examples, although we confine to situations with
constant number of replicates (k = 2). The results are
shown in Tables 3 (ρXZ = 0.2) and 4 (ρXZ = 0.7).

Due to the introduction of Z, the true effects that we are
trying to estimate are somewhat smaller than when X is

X̂

σU
2

λ σ σ σ= +( )X X U
2 2 2/
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the only independent variable in the models. Neverthe-
less, we see that when the correlation between X and Z is
small (Table 3), the pattern from Table 2 is repeated, in
that the naive and RC corrected estimates of the effects of
X are very similar for models A and B, while for continu-
ous exposure and for model C, RC is much better. In fact,
the attenuation factors are quite similar to the ones
obtained in Table 2 (for constant k).

Regarding the effects estimates for the covariate Z, we see
that both methods are quite good, though while the RC
approach gives unbiased estimates, the naive approach

tends to overestimate as the measurement error increases.
This is a well-known effect for covariates positively corre-
lated to error-prone explanatory variables.

When the correlation between X and Z is stronger (Table
4), the differences between the naive and the RC corrected
estimates increase, especially when the measurement
error is large. Actually, the attenuation factors for the RC
approach are about the same as in Table 3 for models A
and B. Meanwhile, the naive estimates are attenuated by a
factor 0.4 in the worst cases (λ = 0.2). So, the high corre-
lation leads to more bias in the naive effect estimates, but

Table 2: Results from simulations without covariates. Naive and regression calibrated effect estimates in linear regression with error-
prone exposure X, analysing (A) dummy variables, comparing 5th vs. 1st quintile, (B) quintile numbers, and (C) median values within 
quintile groups. Results from analysis with continuous exposure is included for comparison. We have X and Y ~ N (0,1) and the error U 

~ N (0, ), where  is chosen such that the reliability ratio λ is either 0.8, 0.5 or 0.2. The results are obtained via simulation, 

where the correlation ρXY between continuous X and Y is set to either 0.7 or 0.2. The true effects are indicated. For the cases marked 

'k constant', each individual is measured twice. For the cases marked 'k not constant', the replication pattern is 5 measurements on a 
random 20% subset of individuals and 1 measurement on the rest. Standard errors for the corrected cases are bootstrapped.

k constant k not constant
ρXY model true coef λ naive coef (SE) RC coef (SE) naive coef (SE) RC coef (SE)

0.8 0.62 (0.003) 0.70 (0.002) 0.58 (0.003) 0.70 (0.003)
cont 0.70 0.5 0.47 (0.003) 0.70 (0.004) 0.38 (0.002) 0.70 (0.005)

0.2 0.23 (0.002) 0.69 (0.010) 0.16 (0.002) 0.69 (0.011)

0.8 1.85 (0.010) 1.85 (0.008) 1.77 (0.010) 1.77 (0.008)
A 1.96 0.5 1.61 (0.010) 1.61 (0.009) 1.45 (0.010) 1.47 (0.009)

0.2 1.14 (0.010) 1.14 (0.008) 0.93 (0.010) 1.00 (0.010)
0.7

0.8 0.44 (0.002) 0.44 (0.002) 0.42 (0.002) 0.42 (0.002)
B 0.47 0.5 0.38 (0.002) 0.38 (0.002) 0.35 (0.002) 0.35 (0.002)

0.2 0.27 (0.002) 0.27 (0.002) 0.23 (0.002) 0.24 (0.002)

0.8 0.68 (0.003) 0.76 (0.003) 0.62 (0.003) 0.76 (0.003)
C 0.76 0.5 0.51 (0.003) 0.76 (0.005) 0.42 (0.003) 0.76 (0.006)

0.2 0.25 (0.002) 0.75 (0.011) 0.18 (0.002) 0.77 (0.013)

0.8 0.18 (0.003) 0.20 (0.003) 0.17 (0.003) 0.21 (0.003)
cont 0.20 0.5 0.13 (0.003) 0.20 (0.004) 0.11 (0.002) 0.20 (0.004)

0.2 0.07 (0.002) 0.20 (0.006) 0.04 (0.002) 0.19 (0.006)

0.8 0.52 (0.010) 0.52 (0.010) 0.53 (0.010) 0.52 (0.010)
A 0.56 0.5 0.45 (0.010) 0.45 (0.010) 0.41 (0.010) 0.42 (0.010)

0.2 0.32 (0.010) 0.32 (0.010) 0.25 (0.010) 0.27 (0.009)
0.2

0.8 0.13 (0.002) 0.13 (0.002) 0.12 (0.002) 0.12 (0.002)
B 0.13 0.5 0.11 (0.002) 0.11 (0.002) 0.10 (0.002) 0.10 (0.002)

0.2 0.08 (0.002) 0.08 (0.002) 0.06 (0.002) 0.06 (0.002)

0.8 0.19 (0.003) 0.22 (0.004) 0.18 (0.003) 0.22 (0.004)
C 0.22 0.5 0.14 (0.003) 0.21 (0.005) 0.12 (0.003) 0.22 (0.005)

0.2 0.07 (0.002) 0.22 (0.007) 0.05 (0.002) 0.21 (0.007)
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it also means that the covariate Z contains much informa-
tion about the true exposure X, enabling the RC approach
to counteract parts of the bias.

Furthermore, while for the continuous case the regression
calibration approach still manages to produce unbiased
estimates, we see that for model C there are some devia-
tions for large measurement errors. We also see that the
tendency of the naive approach to overestimate the effects
of Z, as observed in Table 3, is continued here, and now
the RC estimates are also affected.

Example
To illustrate our results, we use data on non supplemental
folate intake, total energy intake and self-reported depres-
sion from the Norwegian Women and Cancer (NOWAC)

cohort study started in 1991 [22]. The data were collected
by food frequency questionnaires (FFQs), and we analyze
a sub replication study in which a sample of the cohort
were measured a second time. The replicated subsample
consists of 898 individuals with no missing data. Hence,
we have Wij = estimated folate intake through food (in μg/
MJ) for individual i in FFQ j, and Yi = self-reported depres-
sion (yes/no) for individual i, where i = 1, ..., 898, j =1, 2.
The prevalence of depression in the sample was 19.7%.

The folate intake, adjusted for total energy intake, was
related to self-reported depression using logistic regres-
sion modelling. Using the continuous exposure, the naive
odds ratio (OR) was estimated as 0.70 (SE = 0.13) for each

10 μg/MJ increase in folate intake, while the regression

Table 3: Results from simulations including a covariate Z, weakly correlated to X. Naive and regression calibrated effect estimates in 
linear regression with error-prone exposure X and a covariate Z weakly correlated to X (ρXZ = 0.2), analysing (A) dummy variables, 

comparing 5th vs. 1st quintile, (B) quintile numbers, and (C) median values within quintile groups. Results from analysis with 

continuous exposure is included for comparison. We have X, Z and Y ~ N (0,1) and the error U ~ N (0, ), where  is chosen such 

that the reliability ratio λ is either 0.8, 0.5 or 0.2. The results are obtained via simulation, where the correlations ρXY = ρZY are set to 

either 0.7 or 0.2. The true effects of X and Z are indicated for the various models. All individuals are measured twice. Standard errors 
for the corrected cases are bootstrapped.

ρXY = ρZY model true coef (X) λ naive coef (X) (SE) RC coef (X) (SE) true coef (Z) naive coef (Z) (SE) RC coef (Z) (SE)

0.8 0.52 (0.001) 0.58 (0.002) 0.60 (0.002) 0.58 (0.001)
cont 0.58 0.5 0.38 (0.001) 0.58 (0.003) 058 0.62 (0.002) 0.58 (0.002)

0.2 0.19 (0.001) 0.59 (0.009) 0.66 (0.002) 0.58 (0.003)

0.8 1.53 (0.010) 1.53 (0.006) 0.61 (0.003) 0.60 (0.002)
A 1.63 0.5 1.32 (0.007) 1.34 (0.010) 0.60 0.63 (0.003) 0.60 (0.002)

0.2 0.92 (0.010) 0.95 (0.008) 0.67 (0.003) 0.60 (0.003)
0.7

0.8 0.36 (0.002) 0.36 (0.001) 0.61 (0.003) 0.60 (0.002)
B 0.39 0.5 0.31 (0.002) 0.32 (0.001) 0.60 0.63 (0.003) 0.60 (0.002)

0.2 0.22 (0.002) 0.23 (0.002) 0.67 (0.003) 0.60 (0.003)

0.8 0.56 (0.003) 0.63 (0.002) 0.61 (0.003) 0.60 (0.002)
C 0.63 0.5 0.42 (0.003) 0.63 (0.003) 0.60 0.63 (0.003) 0.60 (0.002)

0.2 0.21 (0.002) 0.63 (0.009) 0.67 (0.003) 0.60 (0.003)

0.8 0.15 (0.003) 0.17 (0.003) 0.17 (0.003) 0.17 (0.003)
cont 0.17 0.5 0.11 (0.003) 0.16 (0.004) 0.17 0.18 (0.003) 0.17 (0.003)

0.2 0.05 (0.002) 0.17 (0.006) 0.19 (0.003) 0.17 (0.003)

0.8 0.44 (0.010) 0.45 (0.010) 0.18 (0.003) 0.17 (0.003)
A 0.47 0.5 0.38 (0.010) 0.38 (0.009) 0.17 0.18 (0.003) 0.17 (0.003)

0.2 0.27 (0.010) 0.29 (0.010) 0.19 (0.003) 0.17 (0.003)
0.2

0.8 0.11 (0.002) 0.11 (0.002) 0.18 (0.003) 0.17 (0.003)
B 0.11 0.5 0.09 (0.002) 0.09 (0.002) 0.17 0.18 (0.003) 0.17 (0.003)

0.2 0.06 (0.002) 0.07 (0.002) 0.19 (0.003) 0.17 (0.003)

0.8 0.16 (0.003) 0.18 (0.004) 0.18 (0.003) 0.17 (0.003)
C 0.18 0.5 0.12 (0.003) 0.18 (0.004) 0.17 0.18 (0.003) 0.17 (0.003)

0.2 0.06 (0.002) 0.18 (0.007) 0.19 (0.003) 0.17 (0.003)
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calibration approach gave  = 0.62 (bootstrapped SE =
0.16). Looking at the effect of going from the first to the

last quintile (model A), we found  = 0.57, with stand-
ard errors 0.15, for both approaches. The simple trend
(model B) was estimated to 0.87 (SEs 0.05) for both
approaches. Applying the median values in model C, the

naive effect estimate was  = 0.61 (SE = 0.13) for each

10 μg/MJ increase in folate intake, while the corrected esti-
mate was 0.52 (SE = 0.15).

Clearly, all of these results are quite unstable. However,
we notice that in situations where the original scale is

incorporated, the regression calibration approach gives
stronger effect estimates than the naive approach. In con-
trast, when the analysis is performed on the quintile scale,
the two approaches give similar results.

The 898 individuals included in the replication study were
sampled from a larger group (n = 19740 with no missing
data) with single measurements of folate intake. Includ-
ing the total group in the analysis, we got the following
results: Using the continuous exposure, the naive odds

ratio was 0.84 (SE = 0.03) for each 10 μg/MJ increase in
folate intake, while the regression calibration approach

gave  = 0.75 (SE = 0.05). Under model A, we found

OR

OR

OR

OR

Table 4: Results from simulations including a covariate Z, strongly correlated to X. Naive and regression calibrated effect estimates in 
linear regression with error-prone exposure X and a covariate Z strongly correlated to X (ρXZ = 0.7), analysing (A) dummy variables, 

comparing 5th vs. 1st quintile, (B) quintile numbers, and (C) median values within quintile groups. Results from analysis with 

continuous exposure is included for comparison. We have X, Z and Y ~ N (0,1) and the error U ~ N (0, ), where  is chosen such 

that the reliability ratio λ is either 0.8, 0.5 or 0.2. The results are obtained via simulation, where the correlations ρXY = ρZY are set to 

either 0.7 or 0.2. The true effects of X and Z are indicated for the various models. All individuals are measured twice. Standard errors 
for the corrected cases are bootstrapped.

ρXY = ρZY model true coef (X) λ naive coef (X) (SE) RC coef (X) (SE) true coef (Z) naive coef (Z) (SE) RC coe  (Z) (SE)

0.8 0.33 (0.003) 0.41 (0.003) 0.47 (0.003) 0.41 (0.003)
cont 0.41 0.5 0.21 (0.002) 0.40 (0.005) 0.41 0.55 (0.003) 0.41 (0.004)

0.2 0.09 (0.001) 0.42 (0.013) 0.64 (0.002) 0.40 (0.009)

0.8 0.91 (0.013) 0.97 (0.010) 0.51 (0.004) 0.47 (0.003)
A 1.05 0.5 0.68 (0.012) 0.84 (0.010) 0.47 0.58 (0.004) 0.49 (0.003)

0.2 0.40 (0.011) 0.59 (0.013) 0.65 (0.003) 0.53 (0.005)
0.7

0.8 0.21 (0.003) 0.23 (0.002) 0.51 (0.004) 0.47 (0.003)
B 0.25 0.5 0.16 (0.003) 0.20 (0.002) 0.47 0.58 (0.004) 0.49 (0.003)

0.2 0.09 (0.002) 0.14 (0.003) 0.65 (0.003) 0.53 (0.004)

0.8 0.33 (0.004) 0.40 (0.004) 0.51 (0.004) 0.47 (0.003)
C 0.41 0.5 0.21 (0.003) 0.37 (0.004) 0.47 0.58 (0.004) 0.49 (0.003)

0.2 0.09 (0.002) 0.30 (0.007) 0.65 (0.003) 0.53 (0.004)

0.8 0.09 (0.004) 0.12 (0.005) 0.13 (0.004) 0.11 (0.004)
cont 0.12 0.5 0.06 (0.003) 0.11 (0.006) 0.12 0.16 (0.004) 0.12 (0.005)

0.2 0.02 (0.002) 0.11 (0.010) 0.19 (0.003) 0.13 (0.008)

0.8 0.26 (0.012) 0.27 (0.012) 0.14 (0.004) 0.13 (0.004)
A 0.30 0.5 0.20 (0.012) 0.23 (0.014) 0.13 0.17 (0.004) 0.14 (0.005)

0.2 0.12 (0.011) 0.16 (0.019) 0.19 (0.003) 0.16 (0.006)
0.2

0.8 0.06 (0.003) 0.06 (0.003) 0.14 (0.004) 0.13 (0.004)
B 0.07 0.5 0.05 (0.003) 0.05 (0.003) 0.13 0.17 (0.004) 0.15 (0.005)

0.2 0.03 (0.002) 0.04 (0.004) 0.19 (0.003) 0.16 (0.006)

0.8 0.09 (0.004) 0.11 (0.005) 0.14 (0.004) 0.13 (0.004)
C 0.11 0.5 0.06 (0.004) 0.10 (0.006) 0.13 0.17 (0.004) 0.14 (0.005)

0.2 0.02 (0.002) 0.08 (0.009) 0.19 (0.003) 0.16 (0.006)

σU
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 = 0.71 (SE = 0.04) for both approaches, and the sim-
ple trend (model B) was estimated to 0.92 with standard
error 0.01, again for both approaches. Applying the
median values in model C, the naive effect estimate was

 = 0.78 (SE = 0.03) for each 10 μg/MJ increase in folate
intake, while the corrected estimate was 0.67 (SE = 0.05).

Although we now have varying numbers of replications,
the two approaches still give the same results for models
A and B, probably because a total of two measurements
on just 4.5% of the individuals is not enough to introduce
the confusion effect mentioned previously. In total,
98.7% of the individuals were classified equally with the
two approaches, and none differed by more than 1 cate-
gory. The overall findings regarding the comparison naive
vs. RC approach are unchanged.

Discussion
We find in this paper that the excellent performance of the
regression calibration method for dealing with measure-
ment error on continuous exposures in regression analy-
sis, is diminished when the exposure is categorized before
effect estimates are obtained. As shown, one needs to
relate back to the original scale for the approach to be val-
uable.

In particular, we find that the effect estimates using RC are
comparative to those obtained by a naive approach of not
correcting for measurement error, when the exposure is
analysed on a categorical scale. In some cases they are ana-
lytically equal. The main reason for the poor results is that
categorizing using the corrected exposure still retains mis-
classification, which is similar to the misclassification
obtained with the naive approach, and this misclassifica-
tion induces bias in the effect estimates. When using the
median measured value of each exposure group as explan-
atory variable, regression calibration works by decreasing
the spread in the exposure distribution, thus resulting in
larger effect estimates.

For regression analysis including a covariate measured
without error, we find some differences between the naive
and the RC approach, especially when the correlation
between the exposure and the covariate is strong. How-
ever, none of the approaches are particularly good.

Since the reason for the poor results is to be found in the
treatment of the explanatory variable, our general findings
are most certainly not exclusive to any regression model,
but can be extended to concern other regression models.

In diagnostic tests, for example, it is quite common to cat-
egorize according to a fixed cut-off level, where an extreme
value is diagnosed as a case. Furthermore, in epidemio-

logic studies, one can also relate to fixed exposure groups/
exposure groups that are defined independently from the
observed data, classifying for example smoking into {0},
{1 – 10}, {11 – 20} and {> 20} cigarettes per day, or body
mass index (BMI) into underweight (< 18.5), normal
weight (18.5 to 24.9), overweight (25 to 29.9), and obese
(≥ 30). A small simulation study was conducted to explore
whether the current results sustain when such fixed cut-
points are applied, and it seems RC now gains a small
advantage compared to the naive approach. Also, the
more extreme the cut-point, the larger the difference
between the two approaches. This situation corresponds
to the one where the true percentiles are known, though
the interpretation of the results is somewhat different.

We have focused on a situation with replicates. However,
as outlined in the Introduction, other sources of informa-
tion regarding the measurement error could be either
internal or external validation studies or instrumental var-
iables. The approach studied in this paper would still
amount to fitting a regression model for the true given the
measured exposure, and including the predicted exposure
from this model in the main analysis. Furthermore, the
percentiles would be predicted by the same model, so
naive and corrected categorized exposure are the same in
these situations as well.

In some cases it might not be appropriate to use the orig-
inal scale in the analysis, the researcher might specifically
wish to relate to the categorical variables. In our view,
there are two possible approaches to obtain efficient effect
estimates in these cases. Either a) some information is
needed about misclassification probabilities or b) a better
way is needed to categorize from the original continuous
measurements.

We cannot achieve a) using just replicate measures (with-
out further assumptions on the distribution of X) but
could if we had validation data. For example, Rosner [16]
suggested to simply treat these situations as misclassifica-
tion problems, using ordinal regression procedures with
validation data. A similar approach involving latent class
modeling of replicated data has been proposed [23].
Recently, Küchenhoff et al. [24] developed the MC-SIMEX
methodology, to deal with situations with misclassifica-
tion in categorical exposure and/or response, however the
procedure requires either knowledge or an estimate of the
misclassification matrix. A Bayesian approach to misclas-
sification problems has been suggested [25], which might
be taken a step further in our setting.

To achieve b) one can try to estimate the underlying dis-
tribution of X, and its percentiles in a nonparametric way
using the replicate measures. There has been extensive
work on estimating the distribution of X (see [26] and ref-
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erences therein, and a new idea recently proposed by
Freedman et al. [27]) but the ability of these techniques to
accurately estimate percentiles has not been fully
explored. Work is underway to explore the use of these
techniques in the current problem.

Instead of going via the expected values of the continuous
exposure, we could find directly the expected categorical
exposure. We expect that analysis with expected condi-
tional probabilities (given the observed exposure) of the
categories will give better results than the analysis with
dummy variables. The latter amounts to adjusting the
probability of the most probable category to 1 and all the
other probabilities to 0, thereby disregarding the informa-
tion that lies in the uncertainty of the categorization.

Future work should aim to develop suitable and func-
tional correction procedures in analyses where the expo-
sure variable is categorized according to percentiles, and
investigations should be carried out in order to decide
which method is the best or most suitable for recommen-
dations to include in routine analysis.
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